
ME-429 Problem set 6 2025-04-02

Problem 1. Computing shortest paths

Let G be an undirected graph with N nodes {s1, ... , sN}. Suppose G is complete, i.e., every pair of nodes is
connected by an edge. For i ̸= j, let aij ∈ R>0 be the cost of the edge connecting si and sj . For i = j, we
set aij = 0. By interpreting the nodes as states and the edges as actions, we may directly apply the dynamic
programming method seen in lecture to compute shortest paths in G.

s1

s5

s4

s3

s2

2

3

1

0.5

6

2

5

7

5

5

Figure 1: The graph G.

a) For the graph in Figure 1, use dynamic programming to compute the cost of the shortest path from each si ,
i ∈ {1, ... , 4}, to s5.
Hint: For each k ∈ {1, ... , N}, and node si , let Vk(si) be the optimal cost, i.e. shortest path, to sN when
starting from si with N − k steps remaining. Clearly, VN(sN) = 0 and VN(sj) = ∞ for all j ̸= N. Based on this,
compute VN−1(si) for all si , then VN−2(si), and so on, until V1(si).

b) Use the computed values to reconstruct the shortest paths (i.e. the sequence of nodes that gives optimal
cost) from each si , i ∈ {1, ... , 4}, to s5.

c) A naive way to compute shortest paths is to enumerate and compare all paths with at most N − 1 steps
from a given node si , i ∈ {1, ... , N − 1}, to sN . How many such paths1 are there for each si in a complete
graph with N vertices? How does the number of computations compare (asymptotically) to the dynamics
programming method above?

1To simplify counting, you may count e.g. s1s1s1s5s5 and s1s5s5s5s5 as distinct paths.

1



ME-429 Problem set 6 2025-04-02

Problem 2. Escape game

START

SAFE!

Figure 2: The escape game.

Player 1 (Alice) is trying to escape, going from the start node to the safe zone without being intercepted by
Player 2 (Eve) who is trying to stop her. We model this as a dynamic game with stages k = 1, ... , K and states
S = {sU , sM , sD, sE}. States sU ,sM ,sD represent Alice’s current position (up, middle, or down), and state sE is
entered (and never left) once Eve has caught her.
In Figure 2, each row corresponds to a stage of the game. At each stage, Alice can decide to continue on the
same row, or instead move diagonally one row up or one row down. Eve is aware of the current state, i.e. Alice’s
position, and she is allowed to block one of the three rows in the next stage, taking her decision simultaneously
with Alice. If she selects the row corresponding to Alice’s next move, the game enters state sE which will result
in cost 1 for Alice at the final stage. Otherwise, if Alice survives, i.e. the game is not in state sE at the final
stage, Alice gets cost −1. Eve’s costs are the costs of Alice multiplied by −1.
The actions available to Alice depend on the current state s, namely,

Us =


{U, M, D} , if s ∈ {sM , sE} ;
{U, M} , if s = sU ;
{M, D} , if s = sD.

For Eve, the action set is state-independent and given by V = {U, M, D}.

a) Based on the game description, define its evolution map f (s, u, v) for each s and u ∈ Us, v ∈ V.

b) Additionally, we define a stage cost function gk(s, u, v) representing the cost for Alice, by setting, for any
u ∈ Us, v ∈ V,

gk(s, u, v) =


1, if k = K and s = sE ;
−1, if k = K and s ̸= sE ;
0, otherwise.

Determine VK (s) for all s ∈ S.

c) Observe that for k ∈ {1, ... , K − 1} and s ∈ S, we have Vk(s) = minu∈∆(Us) maxv∈∆(V) Vk+1(f (s, u, v)). Using
dynamic programming, for all s ∈ S, determine the values of VK−1(s), and then VK−2(s).
Hint: For each s ∈ S, observe that any u ∈ Us, v ∈ V uniquely determine the next state through the evolution
map. Hence, given s, you can write down the matrix representation of the respective normal-form game and
determine the value of its Nash equilibrium, i.e., a saddle point of minu∈∆(Us) maxv∈∆(V) Vk+1(f (s, u, v)).

d) As K → ∞, if the backward iteration converges, we would have V (s) = minu∈∆(Us) maxv∈∆(V) V (f (s, u, v))
and we would obtain stationary policies u⋆(s), v⋆(s). Give a set of equations V (s) would have to satisfy for
such stationary policies.

2


